
U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4353
NEW NIST PUBLICATION

October 1990

NationalPDFS Testbed

Report Series

NIST STEP
Working Form
Programmer's
Reference

NATIONAL

TESTBED

U.S. DEPARTMENT OF COMMERCE
National Institute of Standards and Technology

NISTIR 4353

NationalPDFS Testbed

w
NIST STEP

5^ Working Form
11
TE Programmer's

Reference
Stephen Nowland Clark

U.S. DEPARTMENT OF

COMMERCE

Robert A. Mosbacher,

Secretary of Commerce

National Institute of

Standards and Technology

John W. Lyons, Director

June 11, 1990

iMisr

Disclaimer

No approval or endorsement of any commercial product by the National Institute of

Standards and Technology is intended or implied

UNIX is a trademark of AT&T Technologies, Inc.

Table Of Contents

1 Introduction 1

1.1 Context 1

2 STEPparse Control Flow 2

2.1 First Pass: Parsing

2.2 Second Pass: Output Generation...

3 Working Form Implementation 3

3.1 Primitive Types 3

3.2 STEP Working Form Manager Module 3

3.3 Code Organization and Conventions 3

3.4 Memory Management and Garbage Collection 4

3.5 Object 4

3.6 Product 6

4 Writing An Output Module 7

4.1 Layout of the C Source 8

4.2 Output Module Linkage Mechanisms 9

5 Working Form Routines 9

5.1 Working Form Manager 9

5.2 Object 10

5.3 Product 19

6 STEP Working Form Error Codes 20

Appendix A: References 23

iii

to

M

^
' I <<*«>

w

i»4n0 to sldsT ,:W

i .

L

f

'’*J- '

;

•
'

'V
'

'
•*j. . . v^i ,

•
,

•
,

, *’<| '•!

•'#1

4,J,; 1.0 ^

. ••.>!•. !••> .•fi>. >1.-1.(M ..ir.»»A>i.i,f .1 /l •• ^

€ -'
t4l I ^ • • * Ili •» I • V>1 »»'A^ I

..iM «• * •* ,*• .*)»|> » *' I S

• •• k » /
• • *1 1 tvi 1 1 (V* 1

1 y '

¥.

-
. .

.
,

,

. .

^^,, ^..
-. ^

4.,

3* II •.»'4V'» - ii.^^•f >- f#]*(* 1

1

.

' '
'

I

‘

,V ' .

‘^

1

'"^^ '“\ ij '

i (£m

V •»* r»ii» «*'»»»« f«4^» *'»»«».

-

S^i'. i. - wii.* .• •‘.niiKnvxft.ivrtmt,

^ ^ .'A ,4

^ f v« • 4 > -,4)*-4» *>* *

0
.V . • k t 4 • < > 1 •« I •«! « »!« » 1

or

* 1 * » ‘ If# • • • 'f *«» ri’i f c

f»*. ««| - f-4«..f li ••^fk • A*

^s. «. « 4 l >(4-~ . 4 tl . >kbK«

Is

r '•‘'^Afi

* <>

NIST STEP Working Form
Programmer’s Reference

Stephen Nowland Clark

1 Introduction

The NIST STEP physical file parser [Clark90c], and its associated STEP parser,

STEPparse, are Public Domain tools for manipulating product models stored in the

STEP physical file format [AltemuellerSS], These tools are a part of the NIST PDES
Toolkit [Clark90a], and are geared particularly toward building STEP translators. This

reference manual discusses the internals of the STEP Working Form, including

STEPparse. The reader is assumed to be familiar with the design of the Toolkit

([Clark90a], [Clark90b], [Clark90c]). In some cases, technical knowledge of the Ex-

press Working Form [Clark90e] is also required.

The STEP Working Form relies on the NIST Express Working Form [Clark90b] as an

in-core data dictionary, which provides a context in which STEP models can be inter-

preted. The tight dependency of the STEP Working Form abstractions on those of the

Express Working Form is due to the schema-independent nature of the former. The

STEP Working Form, and, in particular, STEPparse, contain no knowledge of any par-

ticular information model. Applications built on these tools can thus manipulate STEP
product models in the context of any number of Express information models without

requiring recompilation.

1.1 Context

The PDES (Product Data Exchange using STEP) activity is the United States’ effort in

support of the Standard for the Exchange of Product Model Data (STEP), an emerging

international standard for the interchange of product data between various vendors’

CAD/CAM systems and other manufacturing-related software [SmithSS]. A National

PDES Testbed has been established at the National Institute of Standards and Technol-

ogy to provide testing and validation facilities for the emerging standard. The Testbed

is funded by the CALS (Computer-aided Acquisition and Logistic Support) program of

the Office of the Secretary of Defense. As part of the testing effort, NIST is charged

with providing a software toolkit for manipulating PDES data. This NIST PDES Tool-

kit is an evolving, research-oriented set of software tools. This document is one of a set

of reports which describe various aspects of the Toolkit. An overview of the Toolkit is

provided in [Clark90a], along with references to the other documents in the set.

For further information on the STEP Working Form or other components of the Toolkit,

or to obtain a copy of the software, use the attached order form.

NIST STEP Working Form Programmer’s Reference Page 1

Stephen Nowland Clark

2 STEPparse Control Flow

A STEPparse translator consists of two separate passes: parsing and output generation.

The first pass builds an instantiated Product representing the product model specified

in the STEP input file. This Product can then be traversed by an output module in

the second pass, producing whatever report is desired. It is anticipated that users will

need output formats other than those provided with the NIST Toolkit. The process of

writing a report generator for a new output format is discussed in detail in section 4.

2.1 First Pass: Parsing

The first pass of a STEPparse translator is a very simple parser. The STEPparse gram-

mar itself is independent of any conceptual schema. The lexical analyzer recognizes

any entity class name simply as an identifier; the actions associated with rules in the

grammar then interpret this name as refering to a particular Express entity, and con-

struct appropriate objects. As each construct is parsed, it is added to the Working Form.

Because the STEP physical file format does not allow forward references to as-yet-un-

defined entity instances, all symbol references can be (and are) resolved during this

parsing pass, so that no symbol resolution pass is required.

The STEPparse parser is written using the standard parser generation languag-

es, Yacc and Lex. The grammar is processed by Bison, the Free Software Founda-

tion’s implementation of Yacc. The lexical analyzer is produced by Flex , a fast.

Public Domain implementation of Lex.

2.2 Second Pass: Output Generation

The report or output generation pass manages the production of the various output files.

In the dynamically linked version of STEPparse, this pass loads successive output mod-

ules dynamically, calling each to traverse the Working Form. The dynamic linking

mechanism is discussed briefly in [Clark90d]. It is also possible to build a statically

linked translator, with a particular output module loaded in at build time; this is, in fact,

the only mechanism available in an environment which is not derived from BSD 4.2

UNIX.

A report generator is an object module, most likely written in C, which has been com-

piled as a component module for a larger program (i.e., with the -c option to a Unix C
compiler). In the dynamically linked version, the object module is linked into the run-

ning parser, and its entry point (by convention a function called print_file ()) is

1. The Free Software Foundation (FSF) of Cambridge, Massachusetts is responsible for the GNU Project,

whose ultimate goal is to provide a free implementation of the UNIX operating system and environment.

These tools are not in the Public Domain: FSF retains ownership and copyright priviledges, but grants free

distribution rights under certain terms. At this writing, further information is available by electronic mail on

the Internet from gnu@prep.ai.mit.edu.

2. Vem Paxson’s Fast Lex is usually distributed with GNU software, although, being in the Public Domain,

it is not an FSF product and does not come under the FSF licensing restrictions.

NIST STEP Working Form Programmer’s Reference Page 2

Stephen Nowland Clark

called. The code of this module consists of calls to STEP Working Form access func-

tions and to standard output routines. Chapter 4 provides a detailed description of the

creation of a new output module.

3 Working Form Implementation

As in the Express Working Form [Clark90d], the Object abstraction is implemented as

aSymbol header block with a pointer to a private struct Object. This C structure

contains the real definition of the abstraction, but is never manipulated directly outside

of the Object module. Product is implemented as a pointer to a private structure,

struct Product.

Most stylistic and other conventions from the Express Working Form are equally valid

for STEP; they are reiterated here for emphasis.

3.1 Primitive Types

The STEP Working Form makes use of several modules from the Toolkit general li-

braries, including the Error and Linked_List modules. These are described in

[Clark90d].

3.2 STEP Working Form Manager Module

In addition to the abstractions discussed in [Clark90c], 1 ibs tep . a contains one more

(conceptual) module, the package manager. Defined in step . c and step . h, this

module includes calls to intialize the entire STEP (and Express) Working Form pack-

age, and to run each of the passes of a STEPparse translator.

3.3 Code Organization and Conventions

Each abstraction is implemented as a separate module. Modules share only their inter-

face specifications with other modules. A module Foo is composed of two C source

files, foo . c and foo . h. The former contains the body of the module, including all

non-inlined functions. The latter contains function prototypes for the module, as well

as all type and macro definitions. In addition, global variables are defined here, using

a mechanism which allows the same declarations to be used both for extern declara-

tions in other modules and the actual storage definition in the declaring module. These

globals can also be given constant initializers. Finally, foo . h contains inline function

definitions. In a compiler which supports inline functions, these are declared static
inline in every module which includes foo .h, including foo . c itself. In other

compilers, they are undefined except when included in foo . c, when they are compiled

as ordinary functions, foo . c resides in ~pdes/src/step/; foo . h in

~pdes/ include/.

The type defined by module Foo is named Foo, and its private structure is struct
Foo. Access functions are named as FOOfunction () ; this function prefix is abbre-

viated for longer abstraction names, so that access functions for type

Foolhardy_Bartender might be of the form FOO_BARfunction () . Some

NIST STEP Working Form Programmer’s Reference Page 3

Stephen Nowland Clark

functions may be implemented as macros; these macros are not distinguished typo-

graphically from other functions, and are guaranteed not to have unpleasant side effects

like evaluating arguments more than once. These macros are thus virtually indistin-

guishable from functions. Functions which are intended for internal use only are named
FOO_funct ion () , and are usually static as well, unless this is not possible. Glo-

bal variables are often named FOO_var iable; most enumeration identifiers and con-

stants are named FOO_CONSTANT (although these latter two rules are by no means

universal).

Every abstraction defines a constant FOO_NULL, which represents an empty or missing

value of the type. In addition, there are several operations which are defined for every

type; these are primarily general management operations. Each abstraction defines at

least one creation function, e.g. FOOcreate () . The parameters to this creation func-

tion vary, depending on the abstraction. A permanent copy of an object (as opposed to

a temporary copy which will immediately be read and discarded) can be obtained by

calling FOOcopy (foo) . This helps the system keep track of references to an object,

ensuring that it is not prematurely garbage-collected. Similarly, when an object or a

copy is no longer needed, it should be released by calling FOOfree (foo) , allowing

it to be garbage-collected if appropriate.

For each abstraction, there is a function FOOis_foo (ob j) which returns true if

and only if its argument is a foo. This is useful when dealing with a heterogeneous list,

for example.

3.4 Memory Management and Garbage Collection

In reading various portions of the STEP Working Form documentation, one may get the

impression that the Working Form does some reasonably intelligent memory manage-

ment. This is not true. The NIST PDFS Toolkit is primarily a research tool. This is

especially true of the Express and STEP Working Forms. The Working forms allocate

huge chunks of memory without batting an eye, and this memory often is not released

until an application exits. Hooks for doing memory management do exist (e.g.,

XXX free () and reference counts), but currently are largely ignored.

3.5 Object

The Object abstraction is the basic building block of the STEP Working Form. An
Object is created for each unit of value in a PDES/STEP product model: each entity

instance, aggregate, integer, string, etc. On the surface, this would seem to be a reason-

ably straightforward module to implement: each Object has an optional name, a

Type, and a value. The value may be simple or structured; in either case, it basically

comes down to a pointer - either to an array of Objects, or to an integer, real, string,

etc.

As with most abstractions in the Express Working Form, Object is implemented as a

Symbol header whose definition field points at a struct Object, which is

defined thus:

struct Object {

NIST STEP Working Form Programmer’s Reference Page 4

Stephen Nowland Clark

Type type;

Generic user data;
union {

Constant enumeration;
Integer integer;
Logical logical;
Real real;

String string;
Object* entity;
Aggregate aggregate;

value;

The first two fields are pretty straightforward. Note that user_data is a generic

pointer field. In strict ANSI C, only a pointer can be safely stored into this field and

later retrieved; it is safest to only store pointers in this field. In particular, the age-old

trick of casting pointers and integers back and forth, never completely portable, is now
officially frowned upon.

The value union is where things get tricky. This field contains the actual value of the

object represented. Unstructured types (numbers, logicals, and strings) are represented

directly; e.g., object .value . integer contains an integer, and

object .value . string, a character pointer. The value of an enumeration object

is represented as a Constant, which will be an element of the appropriate enumera-

tion. The integer representation of this enumeration element can be retrieved by calling

(int) CSTget_value (object .value .enumeration)

.

An entity instance’s value field, value . entity, is a pointer to the base of an array

of objects. Each element of this array corresponds to an attribute of the entity; attributes

appear in the same order as in a PDES/STEP physical file, with empty attributes explic-

itly represented by OBJECT_NULL. The offset to a particular attribute value is re-

trieved from the Express data dictionary by calling

ENTITYget_attribute_of fset (entity, attribute) , where entity is

the entity class of the object in question and attribute is the Variable represent-

ing the attribute to be located.

The most convoluted object value representation is that for aggregates. An aggregate

value is represented as a pointer to a struct Aggregate, defined as

struct Aggregate {

int

int

Expression
Object*

low;

high;

max;

contents

;

The last field, contents, holds the actual contents of the aggregate, as an array of

Objects. The low field provides a lower bound on allowable indices into this array,

and doubles as a logical offset to the first element of the array. This value is 1 for any

NIST STEP Working Form Programmer’s Reference Page 5

Stephen Nowland Clark

non-array aggregate. Thus, when low is 1, some_aggregate [1] is found at

contents [0] . Similarly, in an array whose low is 10, the some_array [12] is

found at contents [
12-1 0 = 2]. low remains constant in any particular aggre-

gate object. The high field gives an upper bound on the indices of currently filled slots

in an aggregate object. Every index into the aggregate beyond high which is in bounds

is guaranteed to return OBJECT_NULL. The end result is that a loop of the form

for (i = low; i <= high; + + i) <use contents [i-low] > will al-

ways hit all of the elements of an aggregate. This function of offsetting by the lower

bound is bundled into the various aggregate indexing functions of the working form

(OBJaggr_at () , OBJlist_insert () ,etc.), so that the indices which a user sees

will be the ones which would be expected based on the Express model. In the current

implementation, high in an aggregate whose type (from Express) gives a finite upper

bound always remains constant at this bound. In the case of an aggregate with no spec-

ified upper bound, however, high may vary with the number of elements actually in

the aggregate. The expression (from Express) giving the absolute upper bound on an

aggregate is cached in aggregate->max. high is never allowed to be greater than

the value of this expression.

The two calls OBJaggr_at () and OBJaggr_at_put () can be used with any kind

of aggregate, although they are intended to be used primarily for building general ag-

gregates which will later be OBJtype_cast () into specific types of aggregates.

This is how STEPparse builds aggregates, since it is considerably easier than figuring

out at parse time what type of aggregate should be built. The various class-specific ma-

nipulations (list concatenation, set intersection, etc.) are provided by calls requiring ag-

gregates of a particular class; OBJ1 ist_concat 0 , OBJset_intersect () ,etc.

It should be noted that the calls for combning aggregates are destructive: each modifies

its first argument to hold its computed result. In general, the two arguments may safely

be set equal. Exceptions are noted in the individual function specifications.

Finally, a word about type conversion (also known as casting, as in C). Type conver-

sions of existing Objects are handled by OBJtype_cast (Object , Type,
Error*) . Only certain conversions are allowed; other attempted casts leave the

Object unchanged and return an error code. Clearly, any Object can trivially be

cast into its own type. The different numeric types can be cast about at will. A general

aggregate can be cast into any specific aggregate class; otherwise, an aggregate can

only be cast into another aggregate type of the same class: an array cannot be cast into

a set, etc. Each element of the aggregate being cast must, of course, be recursively cast

into the appropriate base type; each of these conversions is subject to the same rules as

any other cast. Finally, an entity Object can be converted into an instance of a super-

type of its class, or into an instance of a SELECT type containing some type to which

it can be cast. These casts of entity instances in fact do not modify the Object being

cast.

3.6 Product

A product in STEP contains a large number of interrelated entity instances, and is rep-

resented by the Product abstraction. Each Product is named, and includes a point-

er to the Express model which provides the scope in which its component Objects are

NIST STEP Working Form Programmer’s Reference Page 6

Stephen Nowland Clark

defined. These component objects can be retrieved from the Product in several

ways: a specific (external) entity instance can be retrieved by name; a Linked_List
of all of the (external) entity instances in the Product can be requested; or a particular

entity class in the Product’s conceptual schema can be queried for all of its instances

(note that this last method retrieves both internal and external entity instances). Internal

(embedded) entity instances and non-entity Objects must appear as attribute values

or aggregate elements somewhere in the Product, and are only accessible via

ENTITYget_instances () and component retrieval from the containing

Objects.

The above three access methods are supported by storing three references to each

Object in a Product. When an Object is added to a Product, it is added to the

end of the list of external objects. This list preserves the order in which the Objects
were added to the Product, and so is appropriate for applications, such as writing a

STEP physical file, which require that there be no forward references to as-yet-unde-

fined Objects. Each external Object is also added to a dictionary which the

Product maintains, to allow retrieval by name. And when an entity object is first cre-

ated, it is added to the instance list of its class.

4 Writing An Output Module

We now turn to the topic of actually writing a report generator. The end result of this

process will be an object module (UNIX . o file) which can be loaded into STEPparse.

This module contains a single entry point which traverses a given Product and writes

its output to a particular file. The conceptual entry point is conventionally called

print_file () ,
while the physical entry point, which simply dispatches to

print_file () , is called entry_point ()

.

In most cases, there will be a one-to-one correspondence between Objects in the instan-

tiated Working Form and records to be written on the output. When this is the case, the

meat of the report generator can be made fairly simple. Since a list of all of the Objects

in the Working Form is available, it is easy to iterate over this list and output each Ob-

ject in sequence:

STEPprint (Product product, FILE* file)

{

Linked_List list;

list = PRODget_contents (product)

;

LISTdodist, obj, Object)

OBJprint (ob j , file);

LISTod;

}

The only remaining problem is to write a function OBJprint () which emits the out-

put record for a single Object. Given the variety of types of Objects, this function will

probably be controlled by a large switch statement, selecting on the Object’s type

class (numbers, strings, and aggregates all have to be printed differently). Code to deal

with multi-dimensional arrays an intemal/external entity references can get tricky, and

NIST STEP Working Form Programmer’s Reference Page 7

Stephen Nowland Clark

should be written carefully. An example of a fairly simple report generator is that used

by STEPparse-QDES. The source code for this module is in

~pcies/src/STEPparse_qdes/step_output_smalltalk . c.

4.1 Layout of the C Source

The layout of the C source file for a report generator which will be dynamically loaded

is of critical importance, due to the primitive level at which the load is carried out. The
very first piece of C source in the file must be the entry_point () function, or the

loader may find the wrong entry point to the file, resulting in mayhem. Only comments

may precede this function; even an # include directive may throw off the loader. An
output module is normally layed out as shown;

void
entry_point (void* product, void* file)

{

extern void print_file ()

;

print_file (product , file);

}

#include "step.h"

. . . actual output routines . .

.

void
print_file (void* product, void* file)

{

print_file_header ((Product) product,

(FILE*) file)

;

STEPprint (product , file);

print_file_trailer ((Product) product,
(FILE*) file)

;

}

Theprint_file () function will probably always be quite similar to the one shown,

although in many cases, the file header and/or trailer may well be empty, eliminating

the need for these calls. In this case, STEPprint () and print_file () will prob-

ably become interchangeable.

Having said all of the above about templates, code layout, and so forth, we add the fol-

lowing note: In the final analysis, the output module really is a free-form piece of C
code. There is one and only one rule which must be followed: The entry point (accord-

ing to the a . out format) to the . o file which is produced when the report generator is

compiled must be appropriate to be called with a Product and a FILE*. The sim-

plest (and safest) way of doing this is to adhere strictly to the layout given, and write an

entry_point () routine which jumps to the real (conceptual) entry point. But any

other convention which guarantees this property may be used.

NIST STEP Working Form Programmer’s Reference Page 8

Stephen Nowland Clark

4.2 Output Module Linkage Mechanisms

One of the powers of STEPparse is the flexibility which it gives a user with regard to

generating output. An important component of this flexibility on BSD Unix systems is

the dynamic loading of output modules. Both static and dynamic binding of output

modules are supported by STEPparse. This is implemented by physically breaking the

object code from the Working Form manager (step . c) into three separate . o files:

the initialization code and the first pass of STEPparse are compiled into step . o,

which is stored in libstep . a. The static linking version of the second pass (without

any output module) is compiled into step_stat ic . o; and the dynamic loading ver-

sion into step_dynamic . o. Sources for all of these components reside in step . c;

the various sections are extracted via conditional compilation: When this file is com-

piled with the preprocessor symbols reports and st at ic_reports defined,

step_stat ic . o is produced. With reports and dynamic_reports defined,

step_dynamic . o is produced; and with none of these defined, step . o is pro-

duced.

Since step_static . o and step_dynamic . o both define the function

STEP report () ,
only one can be linked into any given executable. This selection is

what determines whether a STEPparse translator links in output modules statically or

dynamically. Note that a suitable output module (. o file) must appear after

step_stat ic . o in the linker’s argument list when a statically linked translator is

being built.

5

5.1

Working Form Routines

The remainder of this manual consists of specifications and brief descriptions of the ac-

cess routines and associated error codes for the STEP Working Form. The error codes

are manipulated by the Error module [Clark90d]. Each subsection below corresponds

to a module in the Working Form library. The Working Form Manager module is listed

first, followed by the remaining data abstractions in alphabetical order.

Working Form Manager

Procedure:

Parameters:

Returns:

Description:

Errors:

STEPinitialize

Error* errc - buffer for error code

void

Initialize the STEP Working From package. In a typical STEP translator, this is called

by the default main ()
provided in the Working Form library. Other applications

should call this function at initialization time,

none

Procedure:

Parameters:

Returns:

Description:

STEPparse

String filename - the name of the file to be parsed

Express data_model - conceptual schema (as produced by EXPRESSpass_2 ()

)

Product - the product model parsed

Parse a STEP physical file into the Working Form

NIST STEP Working Form Programmer’s Reference Page 9

Stephen Nowland Clark

Procedure: STEPreport

Parameters:

Returns:

Description:

Description:

Product product - the product to output

void

Invoke one or more report generators for a STEP Working Form model.

Invoke one (or more) report generator(s). When this function is compiled with
-Ddynamic_reports, it will repeatedly prompt for report generators and output
files, dynamically loading and executing them. When it is compiled with
-Dstat ic_reports, a report generator must also be included at link time, with the

entry point print file (Express, FILE*).

5.2 Object

Procedure:

Parameters:

OBJaggr_at

Object object - object to examine

int index - index of requested clement

Error* erre - buffer for error code

Returns:

Description:

Object - value at requested position

Retrieves the value at some position in an aggregate. Note that the calls which are

specific to a particular aggregate class are much to be preferred.

Errors: ERROR index out of range - the index is outside of the bounds of the

aggregate

Procedure:

Parameters:

OBJaggr_at_put

Object object - object to modify

int index - index at which to put clement

Object value - value to insert

Error* erre - buffer for error code

Returns:

Description:

void

Store a value into an aggregate object. Note that the calls which are specific to a

particular aggregate class are much to be preferred.

Errors: ERROR index_out_of_range - the index is outside of the bounds of the

aggregate

Procedure:

Parameters:

OBJaggr_lower_bound

Object object - object to examine

Error* erre - buffer for error code

Returns:

Description:

int - the lower bound of the object

Retrieves the lower bound of an aggregate object For an array, this is the index of the

first element of the array. For other aggregates, it is 1.

Errors: none

Procedure:

Parameters:

OBJaggr_upper_bound

Object object - object to examine

Error* erre - buffer for error code

Returns:

Description:

int - the upper bound of the object

Retrieves the upper bound of an aggregate object. For an aggregate with a constrained

size, this is the value of the upper limit or index. For an aggregate with an infinite

upper bound, the value returned is guaranteed to be larger than the highest index of a

filled slot in the aggregate.

Errors: none

NIST STEP Working Form Programmer’s Reference Page 10

Stephen Nowland Clark

Procedure:

Parameters:

OBJarray_at

Object array - array to examine

int index - index of requested element

Error* errc - buffer for error code

Returns:

Description:

Errors:

Object - value at requested position

Retrieves the value at some position in an array.

ERROR index out of range - the index is outside of the bounds of the

aggregate

Procedure:

Parameters:

OBJarray_at_put

Object array - array to modify

int index - index at which to put element

Object value - value to insert

Error* errc - buffer for error code

Returns:

Description:

Errors:

void

Store a value into an array object.

ERROR index out of_range - the index is outside of the bounds of the

aggregate

Procedure:

Parameters:

OBJbag_add

Object bag - bag to modify

Object item - item to add

Error* errc - buffer for error code

Returns:

Description:

Errors:

void

Inserts an object into a bag.

ERROR bag full - there is no more room in the bag

Procedure:

Parameters:

OBJbag_includes

Object bag - bag to test

Object item - item to test for

Error* errc - buffer for error code

Returns:

Errors:

Boolean - does this bag contain this item?

none

Procedure:

Parameters:

OBJbag_intersect

Object bag - bag to intersect into

Object unitee - bag to intersect with

Error* errc - buffer for error code

Returns:

Description:

void

Intersects two bags. This operation is destructive: the first bag holds the resulting

intersection on return.

Errors: none

Procedure:

Parameters:

OBJbag_remove

Object bag - bag to remove from

Object item - item to remove

Error* errc - buffer for error code

Returns:

Description:

Errors:

void

Remove a single occurence of some item from a bag, if it appears,

none

NIST STEP Working Form Programmer’s Reference Page 1

1

Stephen Nowland Clark

Procedure:

Parameters:

OBJbag_remove_all

Object bag - bag to remove from

Object remove - bag of items to remove

Error* erre - buffer for error code

Returns:

Description:

void

Removes all items in a bag from some other bag. This is bag subtraction. This
operation is destructive: the first bag holds the result on return.

Errors: none

Procedure:

Parameters:

OBJbag_subset

Object bag - bag to test as superset

Object subset - bag to test as subset

Error* erre - buffer for error code

Returns:

Description:

Boolean - does the first bag contain the second as a subset?

This implementation is not completely correct. In particular, the following returns

true: OBJbag_subset ({a, b, c}, {a, a}).

Errors: none

Procedure:

Parameters:

OBJbag_unite

Object bag - bag to unite onto

Object unitee - bag to unite with

Error* erre - buffer for error code

Returns:

Description:

void

Adds the contents of a bag to another bag. This operation is destructive: the first bag
holds the resulting union on return. It is not safe to unite a bag with itself.

Errors: none

Procedure:

Parameters:

Returns:

OBJeopy

Object object - object to copy

Object - a shallow copy of the object

Procedure:

Parameters:

OBJereate

Type type - type to instantiate

Error* erre - buffer for error code

Returns:

Errors:

Object - a new, empty object of the given type

ERROR_cannot_instantiate - the type given cannot be instantiated (e.g..

Generic)

Procedure:

Parameters:

OBJcreate_entity

Entity entity - entity class to instantiate

Linked_List attributes - list of attribute values

int line - source line number of the instance to be created

Error* erre - buffer for error code

Returns:

Description:

Object - a new entity instance, as described

A new object of the specified entity type is created. There should be a one-to-one

correspondence between the values on the attribute value list and the list of attributes

for the entity being instantiated.

Errors: ERROR insufficient attributes - not enough attribute values in the list

provide3^

ERROR_too_many_attributes - too many attribute values in the list provided

NIST STEP Working Form Programmer’s Reference Page 12

Stephen Nowland Clark

Procedure:

Description:

OBJcreate_ud_entity

Create a user-defined entity. This procedure is not yet implemented.

F*rocedure:

Parameters:

OBJfast_get_attribute

Object object - object to examine

Variable attribute - attribute to retrieve

Error* erre - buffer for error code

Returns:

Description:

Object - value of attribute

Retrieves the value of an attribute from an entity instance. This call is faster than

OBJget_att ribute () when the caller already has the actual attribute record for

the desired attribute, rather than simply having its name (as expected by
OBJget attribute!)).

Errors: none

Procedure:

Parameters:

OBJfast_put_attribute

Object object - object to modify

Variable attribute - attribute to store into

Object value - value to store into attribute

Error* erre - buffer for error code

Returns:

Requires:

Description:

void

TYPEget_class(OBJget_typc(object)) == TYPE_ENTITY
Store a value into an attribute of an entity instance. This call is faster than

OBJput_attribute {) when the caller already has the actual attribute record for

the desired attribute, rather than simply having its name (as expected by
OBJput attribute!)).

Errors: Same as for OBJput_attribute !)

.

Procedure:

Parameters:

OBJfree

Object object - object to free

Error* erre - buffer for error code

Returns:

Description:

void

Release an Object. Indicates that the object is no longer used by the caller; if there are

no other references to the object, all storage associated with it may be released.

Errors: none

Procedure:

Parameters:

OBJget_attribute

Object object - object to examine

String attributeName - name of attribute to retrieve

Error* erre - buffer for error code

Returns:

Description:

Object - value of the named attribute

Retrieves the value of a named attribute from an entity instance. This call is the slower

method for retrieving an attribute value. If the actual attribute recored is already

available, use OBJfast_get_attribute !) instead.

Errors: none

Procedure:

Parameters:

Returns:

Errors:

OBJget_line_number

Object object - object to examine

int - line number of object

none

NIST STEP Working Form Programmer’s Reference Page 13

Stephen Nowland Clark

FVocedure:

Parameters:

Returns:

Description:

OBJget_name

Object object - object to examine

String - the object’s name

Retrieves the name of an object. Unnamed objects, which would normally be
embedded entities and non-entities, yield STRING NULL.

Errors: none

Procedure:

Parameters:

Returns:

Errors:

OBJget_type

Object object - object to examine

Type - the type of the object

none

Procedure:

Parameters:

OBJget_user_data

Object object - object to examine

Error* erre - buffer for error code

Returns:

Errors:

Generic - value of user data field for this object

none

Procedure:

Parameters:

OBJget_value

Object object - object to examine

Error* erre - buffer for error code

Returns:

Description:

Generic - the object’s value

Retrieves the value of a single-valued object. The value returned will be a char* for

a string object, a Constant for an enumeration object, and a pointer to an int,
double, or Boolean for an integer, real, or logical object, respectively. See
OBJarray_at () , OBJbag_includes () , OBJlist_at {) , and
OBJset_at () to read from an aggregate. See OBJget_attribute () to read

from an entity instance.

Errors: none

Procedure:

Parameters:

Returns:

Description:

Errors:

OBJinitialize

Error* erre - buffer for error code

void

Initialize the Object module. This is called by STEPinitializeO-

none

Procedure:

Parameters:

Returns:

Errors:

OBJis_extemal

Object object - object to examine

Boolean - is this an external object (non-embedded entity)?

none

Procedure:

Parameters:

Returns:

Errors:

OBJis_intemal

Object object - object to examine

Boolean - is this an internal object (embedded entity)?

none

NIST STEP Working Form Programmer’s Reference Page 14

Stephen Nowland Clark

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

Procedure:

Parameters:

Returns:

Description:

Errors:

OBJlist_add_first

Object list - list to modify

Object item - item to insert

Error* errc - buffer for error code

void

Adds an item to the beginning of a list. This function is not yet implemented,

none

OBJlist_add_last

Object list - list to modify

Object item - item to insert

Error* errc - buffer for error code

void

Adds an item to the end of a list This function is not yet implemented,

none

OBJlist_concat

Object list - list to concatenate onto

Object tail - list to concatenate

Error* errc - buffer for error code

void

Concatenate a list onto the end of another. This operation is destructive: the first list

is modified so that it includes a copy of the second. Changes to the second will not

appear in the first. This function is not yet implemented,

none

NIST STEP Working Form Programmer’s Reference Page 15

Stephen Nowland Clark

Procedure:

Parameters:

OBJput_attribute

Object object - object to modify

String attributeName - name of attribute to store into

Object value - value to store into attribute

Error* errc - buffer for error code

Returns:

Requires:

Description:

void

TYPEget_class(OBJget_type(object)) == TYPE_ENTITY
Stores a value into a named attribute of an entity instance. This call is the slower
method for storing into an attribute. If the actud attribute record is available, for

example from traversing the Entity’s attribute list, use

OBJfast_put attribute!) instead.

Errors: ERROR aggregate expected - value given for an aggregate was not an
aggregate

ERROR_array_expected - value given for an array was not an array

ERROR_bag_expected - value given for a bag was not a bag

ERROR_entity_expected - value given for an entity was not an entity

ERROR_external_expected - an external attribute was given an internal

(embedded) entity as a value

ERROR_inappropriate_entity - the entity given as a value was not of an

expected class

ERROR_integer_expected - value given for an integer was not an integer

ERROR internal_expected - an internal attribute was given an external

entity reference as a value

ERROR_list_expected - value given for a list was not a list

ERROR_logical_expected - value given for a logical was not a logical

ERROR_number_expected - value given for a number was not a number

ERROR_set_expected - value given for a set was not a set

ERROR_st ring_expected - value given for a string was not a string

ERROR_incompatible_types - the value given is not of the expected type, in

some way not covered by any of the above messages

Procedure:

Parameters:

OBJput_line_number

Object object - object to modify

int number - line number for object

Returns:

Description:

Errors:

void

Set an object’s line number,

none

Procedure:

Parameters:

OBJput_name

Object object - object to modify

String name - name for object

Returns:

Description:

void

Sets the name (identifier) of an object; normally, only entity instances which are not

embedded are named.

Errors: none

Procedure:

Parameters:

OBJput_user_data

Object object - object to modify

Generic value - user data value for object

Error* errc - buffer for error code

Returns:

Description:

Errors:

Generic - old value of user data field for this object

Stores a value into an object’s user data field

none

NIST STEP Working Form Programmer’s Reference Page 16

Stephen Nowland Clark

Procedure:

Parameters:

OBJput_value

Object object - object to modify

Generic value - value for object

Error* errc - buffer for error code

Returns:

Description:

void

Sets the value of a single-valued object. The value given should be a char* for a

string object. For an integer, real, or logical object, it should be an int *, double*,
and Boolean*, respectively. For an enumeration object, the value given should be
of type Constant. See OBJaggr at put {) , OBJarray at_put ()

,

OBJbag add () , OBJlist add f irst () , OBJlist add last (), and
OBJset_add() to store into an aggregate. See OBJput attributed to store

into an entity instance.

Errors: none

Procedure:

Parameters:

OBJset_add

Object set - set to modify

Object item - item to add

Error* errc - buffer for error code

Returns:

Description:

Errors:

void

Inserts an object into a set, if it is not already present.

ERROR set_full - there is no more room in the set

Procedure:

Parameters:

OBJsetJncludes

Object set - set to test

Object item - item to test for

Error* errc - buffer for error code

Returns:

Errors:

Boolean - does this set contain this item?

none

Procedure:

Parameters:

OBJset_intersect

Object set - set to intersect into

Object with - set to intersect with

Error* errc - buffer for error code

Returns:

Description:

void

Intersects two sets. This operation is destructive: the first set holds the resulting

intersection on return.

Errors: none

Procedure:

Parameters:

OBJset_remove

Object set - set to remove from

Object item - item to remove

Error* errc - buffer for error code

Returns:

Description:

Errors:

void

Remove an item from a set, if it appears,

none

NIST STEP Working Form Programmer’s Reference Page 17

Stephen Nowland Clark

Procedure:

Parameters:

OBJset_remove_all

Object set - set to remove from

Object remove - set of items to remove

Error* erre - buffer for error code

Returns:

Description:

void

Removes all items in a set from some other set. This is set subtraction. This operation
is destructive: the first set holds the result on return.

Errors: none

Procedure:

Parameters:

OBJset_subset

Object set - set to test as superset

Object subset - set to test as subset

Error* erre - buffer for error code

Returns:

Errors:

Boolean - does the first set contain the second as a subset?

none

Procedure:

Parameters:

OBJset_unite

Object set - set to unite onto

Object unitee - set to unite with

Error* erre - buffer for error code

Returns:

Description:

void

Forms the union of two sets. This operation is destructive: the first set holds the

resulting union on return.

Errors: none

Procedure:

Parameters:

OBJtype_cast

Object object - object to be cast

Type type - type to cast to

Error* erre - buffer for error code

Returns:

Description:

Object - the object, cast to the requested type

Converts an object to a new type, if possible. If the cast is successful (*errc ==
ERROR_none), the original object should no longer be used. It is guaranteed to be
valid only when an error is reported. This call does not report errors to stderr; it is

the callers responsibility to check *errc and to call ERRORreport { *errc,
(String) context) if it is not ERROR none.

Errors: ERROR aggregate expected - value given for an aggregate was not an

aggregate

ERROR_array_expected - value given for an array was not an array

ERROR_bag_expected - value given for a bag was not a bag

ERROR ent ity expected - value given for an entity was not an entity

ERROR_inappropriate_entity - the entity given as a value was not of an

expected class

ERROR integer expected - value given for an integer was not an integer

ERROR_list expected - value given for a list was not a list

ERROR_logical_expected - value given for a logical was not a logical

ERROR_number_expected - value given for a number was not a number

ERROR_set_expected - value given for a set was not a set

ERROR string expected - value given for a String was not a String

ERROR_incompatible_types - the value given is not of the expected type, in

some way not covered by any of the above messages

NIST STEP Working Form Programmer’s Reference Page 18

Stephen Nowland Clark

5.3 Product

Procedure: PRODadd_object

Parameters:

Returns:

Requires:

Description:

Errors:

Product product - product to modify

Object object - entity instance to add

void

TYPEget_class(OBJget_type(object)) == TYPE_ENTITY
Adds an entity instance to a product model. The instance is assumed already to have
been added to the instance list of its class, since OBJcreate ent ity () does this,

none

Procedure:

Parameters:

Returns:

Description:

Errors:

PRODcreate

String name - name for new product

Express model - conceptual schema in which to create product

Product - a new, empty product

Creates an empty product within a particular conceptual schema,

none

Fh-ocedure:

Parameters:

Returns:

Errors:

PRODget_conceptual_schema

Product product - product to examine

Express - conceptual schema in which the product exists

none

Procedure:

Parameters:

Returns:

Description:

Errors:

PRODget_contents

Product product - product to examine

Linked_List - entity instances which make up the product

Retrieves a list of the objects in a product model, in the order in which they were
created.

none

Procedure:

Parameters:

Returns:

Errors:

PRODget_name
Product product - product to examine

String - the name of the product

none

Procedure:

Parameters:

Returns:

LDescription:

Errors:

PRODget_named_object

Product product - product to examine

String name - name of object to retrieve

Object - the named object

Retrieves a named object from a STEP product model, if it is defined,

none

Procedure:

Parameters:

Returns:

Description:

Errors:

PRODintiialize

-- none --

void

Initializes the Product module. This is called by STEPinitializeO-

none

NIST STEP Working Form Programmer’s Reference Page 19

Stephen Nowland Clark

6 STEP Working Form Error Codes

The Error module, which is used to manipulate these error codes, is described in

[Clark90d]. All STEP Working Form error codes are defined in the Object module.

Error: ERROR_aggregate_expected

Severity:

Meaning:

Format:

SEVERITY_ERROR
A non-aggregate value was provided for an aggregate attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_aiTay_expected

SEVERITY_ERROR
An aggregate of a specific non-array class was provided for an array attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_bag_expec ted

SEVERITY_ERROR
An aggregate of a specific non-bag class was provided for a bag attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_bag_full

SEVERITY_WARNING
An item was inserted into an already full bag

- none -

Error:

Severity:

Meaning:

Format:

ERROR_cannot_instantiate

SEVERITY_ERROR
An attempt was made to instantiate an uninstantiable type

%s - type name

Error:

Severity:

Meaning:

Format:

ERROR_entity_expected

SEVERITY_ERROR
A non-entity Object was provided for an attribute having an entity type

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_extemal_expected
SEVERITY_WARNING
An embedded (internal) entity was provided for an attribute with ''external" reference

class

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_inappropriaie_entity

SEVERITY_ERROR
An entity of the wrong type was provided for an attribute having an entity type

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_incompatible_types

severity_error
Some other type problem was encountered in specifying an attribute of some object.

%s - attribute name

NIST STEP Working Form FYogrammer’s Reference Page 20

Stephen Nowland Clark

Error:

Severity:

Meaning:

Format:

ERROR_index_out_of_range

SEVERITY_WARNING
An attempt was made to index an aggregate object outside of the legal bounds

%d - index value

Error:

Severity:

Meaning:

Format:

ERROR_insufficient_attributes

SEVERITY_WARNING
Too few attribute values were provided for a particular entity instantiation

%s - entity instance identifier

Error:

Severity:

Meaning:

Format:

ERROR_integer_expected

SEVERITY_ERROR
A non-integer value was provided for an integer attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_internal_expected

SEVERITY_WARNING
An non-embeddcd (external) entity was provided for an attribute with "internal

reference class

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_list_expected

severity_error
An aggregate of a specific non-list class was provided for a list attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_logical_expected

severity_error
A non-logical value was provided for a logical attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_number_expected

SEVERITY_ERROR
A non-numeric value was provided for a numeric attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_set_duplicate_entry

severity_error
A duplicate entry was added to a set

- none -

Error:

Severity:

Meaning:

Format:

ERROR_set_expected

SEVERITY_ERROR
An aggregate of a specific non-set class was provided for a set attribute

%s - attribute name

Error:

Severity:

Meaning:

Format:

ERROR_set_full

SEVERITY_WARN1NG
An item was inserted into an already full set

— none --

NIST STEP Working Form Programmer’s Reference Page 2

1

Stephen Nowland Clark

Error:

Severity:

Meaning:

Format:

Error:

Severity:

Meaning:

Format:

Error:

Severity:

Meaning:

Format:

Error:

Severity:

Meaning:

Format:

ERROR_siring_expccted

SEVERITY_ERROR
A non-string Object was provided for a string attribute

%s - attribute name

ERROR_too_many_attributes

SEVERITY_WARNING
Too many attribute values were provided for a particular entity instantiation

%s - entity instance identifier

ERROR_undefined_reference

severity_error
A reference was made to an unknown entity instance identifier

%s - entity instance identifier

ERROR_unknown_entity

severity_error
A reference was made to an unknown entity class (type)

%s - entity class name

NIST STEP Working Form Programmer’s Reference Page 22

Stephen Nowland Clark

A References

[Altemueller88] Altemueller, J.. The STEP File Structure. ISO TC184/SC4AVG1
Document N279, September, 1988

[ANSI89] American National Standards Institute, Proarammina Lanauaae C,

Document ANSI X3. 159-1989

[Clark90a] Clark. S. N., An Introduction to The NIST PDES Toolkit, NISTIR

4336, National Institute of Standards and Technology, Gaithersburg,

MD, May 1990

[Clark90b] Clark, S.N., Fed-X: The NIST Express Translator, NISTIR,

National Institute of Standards and Technology, Gaithersburg, MD,
forthcoming

[Clark90c] Clark, S.N., The NIST Workina Form for STEP, NISTIR 4351,

National Institute of Standards and Technology, Gaithersburg, MD,
June 1990

[Clark90d] Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals,

NISTIR 4335, National Institute of Standards and Technology,

Gaithersburg, MD, May 1990

[Clark90e] Clark, S.N., NIST Express Workina Form Proarammer’s Reference,

NISTIR, National Institute of Standards and Technology,

Gaithersburg, MD, forthcoming

[Schenck89] Schenck, D., ed.. Information Modelina Lanauaae Express:

Lanauaae Reference Manual, ISO TC184/SC4AVG1 Document

N362, May 1989

[Smith88] Smith, B., and G. Rinaudot, eds.. Product Data Exchanae

Specification First Workina Draft, NISTIR 88-4004, National

Institute of Standards and Technology, Gaithersburg, MD,
December 1988

NIST STEP Working Form Programmer’s Reference Page 23

IV "’I . .

f./fl?'-'''..

,
, • :

. ..4M iWdi^

mm
I y^.V

‘'VT'clv'' ^
,..a^ ...riiuu ,<^ftoU-«ur:«.T>|^

,
Uk 5 .;iT

,ri'//)'^'i.f>0s

I >i;'.
‘•‘ 'iir

" ;'; ,'/;iif''d^i-;^rti/i;f:\';1

i"'

«'
jJfT

'•»!>••', ^-I,. ..
-•.•,•

,
,4>. (

I

. |i»'’>W

.iiS'i^fUfjf"

U!p'^•^$]^^m!i

ORDER and INFORMATION FORM

MAIL TO:

NATIONAL_

TESTBED -

National Institute of Standards and Technology

Gaithersburg MD., 20899

Metrology Building, Rm-A127

Attn: Secretary National PDES Testbed

(301) 975-3508

Please send the following documents
and/or software:

I I

Clark. S J*J.. An Introduction to The NIST PDES Toolkit

I I

Clark, S.N., The NIST PDES Toolkit: Technical Fundamentals

I I

Clark, S J9., Fed-X: The NIST Express Translator

Q Clark, S .N., The NIST Working Form for STEP

I [

Clark, S.N., NIST Express Working Form Programmer’s Reference

I [

Clark, S.N., NIST STEP Working Form Programmer’s Reference .

I I

Clark, S J^., ODES User’s Guide

[I

Clark, S J9., ODES Administrative Guide

I I

Morris, K.C., Translating Express to SOL: A User’s Guide

I I

Nickerson, D., The NIST SOL Database Loader STEP Working Form to

SQL

I [

Strouse, K., McLay, M., The PDES Testbed User’s Guide

OTHER (PLEASE SPECIFY)

These documents and corresponding software will be
available from NTIS in the future, ^en available, the

NTIS ordering information will be forthcoming.

iMisr

mm. ^ m

L
1

•
t-'-'Ki-

1

i»''«'i.-'i jg'-

'

'

.>»>^'-

.i^yi«ii
'

l|l ^ i ljgli
y^

,|,ln^|ll . .l
'

I

'

l^^.r.^y

.OTMfe _:

f*tT*‘l'’. Ift i

iji.r^k^
l

111. — .. , L
I j frjl ,

'
'

''t'lV

' f'l'. »'.
‘

jAJ4DnAS4 /'*•

mm

y ajifr. v
' •. 'w.'.i^isyir^

<!H'lj«^SIi5ilULSa

V

.fitv'i' 111. ‘

OTi:>jf^2aaA3J^«a^fi^. ;
. g

^

|.
";

'’>'

•

''/I,

' •*• f ''Aa** **5^
^tT^wwii iH iMBi iliA>i»i

’

4
'^’

it^' 1^) V:-,«,4'

V ’.j

I p i)ii 1 ^
iii^w> g ln'ri

" l***»Vj<ifal'ii
.

Mm

wi
f. ''J

•'
I ^4?

)fjjSffiffl
^ '

' ^iSEifc ^ '<¥

NIST-114A

(REV. 3-89)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY

1. PUBUCATION OR REPORT NUMBER

NISTIR 435.3

BIBLIOGRAPHIC DATA SHEET
2. PERFORMING ORGANIZATION REPORT NUMBER

3. PUBUCATION DATE
JULY 1990

4 . TITLE AND SUBTITLE

NIST STEP Working Form Programmer's Reference

5. AUTHOR(S)

Stephen Nowland Clark
6. PERFORMING ORGANIZATION (IF JOINT OR OTHER THAN NIST, SEE INSTRUCTIONS)

U.S. DEPARTMENT OF COMMERCE
NATIONAL INSTITUTE OF STANDARDS AND TECHNOLOGY
GAITHERSBURG, MD 20899

7. CONTRACT/GRANT NUMBER

e. TYPE OF REPORT AND PERIOD COVERED

9. SPONSORING ORGANIZATION NAME AND COMPLETE ADDRESS (STREET, CITY, STATE, ZIP)

10. SUPPLEMENTARY NOTES

DOCUMENT DESCRIBES A COMPUTER PROGRAM; SF-185, FIPS SOFTWARE SUMMARY, IS ATTACHED.

11. ABSTRACT (A 200-WORD OR LESS FACTUAL SUMMARY OF MOST SIGNIFICANT INFORMATION. IF DOCUMENT INCLUDES A SIGNIFICANT BIBUOGRAPHY OR
LITERATURE SURVEY, MENTION IT HERE.)

The Product Data Exchange Specification (PDES) is an emerging standard for the exchange

of product information among various manufacturing applications. The neutral exchange

medium for PDES product models is the STEP physical file format. The National PDES

Testbed at NIST has developed software to manipulate and translate STEP models. This

software consists of an in-memory working form and an associated physical file parser,

STEPparse. The internal operation of the STEPparse parser is described. The implementation
of the data abstractions which make up the STEP Working Form is discussed, and specifi-

cations are given for the Working Form access functions. The creation of STEP translators

using STEPparse is discussed.

12. KEY WORDS (6 TO 12 ENTRIES; ALPHABETICAL ORDER; CAPITAUZE ONLY PROPER NAMES; AND SEPARATE KEY WORDS BY SEMICOLONS)

data modeling; PDES; product data exchange; schema independent software; STEP; STEP physical

file

13. AVAILABIUTY 14. NUMBER OF PRINTED PAGES

29X UNUMITED

FOR OFFICIAL DISTRIBUTION. DO NOT RELEASE TO NATIONAL TECHNICAL INFORMATION SERVICE (NTIS).

ORDER FROM SUPERINTENDENT OF DOCUMENTS, U.S. GOVERNMENT PRINTING OFFICE,
WASHINGTON, DC 20402.

ORDER FROM NATIONAL TECHNICAL INFORMATION SERVICE (NTIS), SPRINGFIELD, VA 22161.

IS. PRICE

AO 3

X

ELECTRONIC FORM

(>p<? t

..YOOJOtlMa<^’ CMA ZK»aAOmV« O 3TVrsinev« J^CTAW

',,
.'"\

''' '; " '^''. '--

A^f.'

lyl
*

i^-jHj8t;<
)

"i
i

' H l i^l*p
r !»''

m-'

-f, i idinT?-* TiJJ/uinp'SaivT •

u '‘‘‘.dJi :
''' '

v-'
•'

'irtflS''

--T'' ,

: .-? :iV«M346«W»1f WA •' .' ‘aovi'VA'4 itO

KoTh-^Woui;* Xli5geEStrT»?^-S5aTrti^^^BS8t^1^^ '

'

i,:n.e.ri..xy «£lj -soilt b'jR.bjraJbJe ©>.

^'ifl’l i*(7 .iVi&!^ jriT .ziRurjoi sXi3t iftois^/ji^ ^312; :f:;>uipB.5r^ eSO.i.Y^
->.i‘i .«£-4&bvn 'i.AT2 bcie b^’,..af|;VJ‘S»'%»;Ml^

*4.’' f-ft'>'Ai,oe)s«ft 0;a '.Wa lirti^t .g^f.ki'ioY/Ttsi ««
;^iii- .

- I joj *(fT - lJf.•U-uK8^ .oJt “iflersAj A*iT

-1.' imOi'.' iu'fj, ,fiw?<oujifii:.b ,l*,r arip’K^ gra^4wV>

'.•/ijk-ii 'ii?]?. Jc .i»wT .straniiawS

=

-—
ir».T- . ..;.V| «'Vo1Rrw-vi5ifw:^*TSwri«

'.'; 'Kir:^ ‘"^Th ,'--:»v:i >06 imnanj^xa^'isuh' i „

^

»»

lA
jKMmiMi mrMMW -t u .tTtMw^woow Tfliwwtt-m*

.

E.!,
'

.,

'
'

,;

'*••*’

'' :m (>/..

:'»l

